Exercice 1: (5 points)

- 1. $C_1 = C_0 + 40 = 1000 + 40 = 1040$; $C_2 = C_1 + 40 = 1040 + 40 = 1080$; $C_3 = C_2 + 40 = 1080 + 40 = 1120$.
- **2.** a) Pour tout entier naturel $n: C_{n+1} = C_n + 40$.
 - **b)** Pour tout entier naturel $n: C_{n+1} C_n = 40 = constante$; on déduit que $(C_n)_{n \in \mathbb{N}}$ est une suite arithmétique de premier terme $C_0 = 1000$ et de raison r = 40.
 - c) Pour tout n de \mathbb{N} : $C_n = C_0 + nr$; c'est-à-dire $C_n = 1000 + 40 n$.
- **3.** On cherche $n \in \mathbb{N}$ tel que : $C_n = 2 \times C_0$:

$$C_n = 2000 \Leftrightarrow 1000 + 40 \ n = 2000 \Leftrightarrow 40 \ n = 2000 - 1000 \Leftrightarrow n = \frac{1000}{40} \Leftrightarrow n = 25$$

Le capital initial aura doublé au bout de 25 ans.

Exercice 2 : « comparer une suite arithmétique et une suite géométrique, calculer la somme de termes consécutifs » (11 points)

Un commerçant a besoin d'un prêt de 100 000 €. Il contacte deux banques A et B.

- 1. La banque A lui propose un prêt remboursable en 7 annuités. Les annuités sont des termes consécutifs d'une suite arithmétique de premier terme $u_0 = 15\,000$ (le premier remboursement est de 15 000 €) et de raison 1800.
 - a) $u_1 = u_0 + 1800 = 15\,000 + 1800 = 16\,800$; $u_4 = u_3 + 1800 = 20\,400 + 1800 = 22\,200$; $u_2 = u_1 + 1800 = 16\,800 + 1800 = 18\,600$; $u_5 = u_4 + 1800 = 22\,200 + 1800 = 24\,000$; $u_6 = u_5 + 1800 = 24\,000 + 1800 = 25\,800$
 - **b)** $u_0 + u_1 + u_2 + u_3 + u_4 + u_5 + u_6 = 7 \times \frac{u_0 + u_6}{2} = 7 \times \frac{15\ 000 + 25\ 800}{2} = 142\ 800.$

La somme totale remboursée si le commerçant souscrivait le prêt auprès de la banque A serait de 142 800 €.

- **2.** La banque B propose également de rembourser le prêt sur 7 ans en 7 versements. Le premier remboursement noté v_0 serait de 20 000 ϵ . Les remboursements suivants, notés v_1 , v_2 , v_3 , v_4 , v_5 , v_6 seraient chacun en augmentation de 2% par rapport au remboursement précédent.
 - a) $v_1 = v_0 \times (1 + 2\%) = v_0 \times 1,02 = 20\ 000 \times 1,02 = 20\ 400$; $v_2 = v_1 \times 1,02 = 20\ 808$.
 - **b)** Pour tout entier n, $0 \le n \le 5$: $v_{n+1} = 1.02 \times v_n$.
 - c) Pour tout entier n, $0 \le n \le 5$: $\frac{v_{n+1}}{v_n} = 1,02 = constante$; on déduit que $(v_n)_{0 \le n \le 5}$ est une suite géométrique de premier terme $v_0 = 20\,000$ et de raison q = 1,02.
 - **d)** $v_0 + v_1 + v_2 + v_3 + v_4 + v_5 + v_6 = v_0 \times \frac{1 q^{6+1}}{1 q} = 20\ 000 \times \frac{1 1,02^7}{1 1,02} \approx 148\ 686.$

La somme remboursée si le commerçant souscrivait le prêt auprès de la banque B serait d'environ 148 686 €.

3. La banque A offre la solution la plus avantageuse.

Exercice 3: Payer en quatre fois (4 points)

Une entreprise achète un robot 6800 \in . Les conditions de paiement sont les suivantes : les quatre remboursements, notés u_0 , u_1 , u_2 , u_3 sont des termes successifs de la **suite géométrique** (u_n) de premier terme u_0 et de raison q = 0.6.

Calculer les quatre remboursements : u_0 , u_1 , u_2 , u_3 .

$$u_0 + u_1 + u_2 + u_3 = u_0 \times \frac{1 - q^{3+1}}{1 - q}$$
; c'est-à—dire: $6\,800 = u_0 \times \frac{1 - 0.6^4}{1 - 0.6} \Leftrightarrow u_0 = \frac{6800 \times 0.4}{1 - 0.6^4} = 3125$

Donc : $u_1 = u_0 \times 0.6 = 3125 \times 0.6 = 1875$;

puis : $u_2 = u_1 \times 0.6 = 1875 \times 0.6 = 1125$;

enfin : $u_3 = u_2 \times 0.6 = 1125 \times 0.6 = 675$.

Vérification : 3125 + 1875 + 1125 + 675 = 6800.

Les quatre remboursements s'élèvent dans l'ordre à 3125 €, 1875 €, 1125 € et 675 €.

Exercice 1: (5 points)

- 1. $C_1 = C_0 + 40 = 1000 + 40 = 1040$; $C_2 = C_1 + 40 = 1040 + 40 = 1080$; $C_3 = C_2 + 40 = 1080 + 40 = 1120$.
- **2.** a) Pour tout entier naturel $n: C_{n+1} = C_n + 40$.
 - **b)** Pour tout entier naturel $n: C_{n+1} C_n = 40 = constante$; on déduit que $(C_n)_{n \in \mathbb{N}}$ est une suite arithmétique de premier terme $C_0 = 1000$ et de raison r = 40.
 - c) Pour tout n de \mathbb{N} : $C_n = C_0 + nr$; c'est-à-dire $C_n = 1000 + 40 n$.
- **3.** On cherche $n \in \mathbb{N}$ tel que : $C_n = 2 \times C_0$:

$$C_n = 2000 \Leftrightarrow 1000 + 40 \ n = 2000 \Leftrightarrow 40 \ n = 2000 - 1000 \Leftrightarrow n = \frac{1000}{40} \Leftrightarrow n = 25$$

Le capital initial aura doublé au bout de 25 ans.

Exercice 2 : « comparer une suite arithmétique et une suite géométrique, calculer la somme de termes consécutifs » (11 points)

Un commerçant a besoin d'un prêt de 100 000 €. Il contacte deux banques A et B.

- 1. La banque A lui propose un prêt remboursable en 7 annuités. Les annuités sont des termes consécutifs d'une suite arithmétique de premier terme $u_0 = 15\,000$ (le premier remboursement est de 15 000 €) et de raison 1800.
 - a) $u_1 = u_0 + 1800 = 15\,000 + 1800 = 16\,800$; $u_4 = u_3 + 1800 = 20\,400 + 1800 = 22\,200$; $u_2 = u_1 + 1800 = 16\,800 + 1800 = 18\,600$; $u_5 = u_4 + 1800 = 22\,200 + 1800 = 24\,000$; $u_6 = u_5 + 1800 = 24\,000 + 1800 = 25\,800$
 - **b)** $u_0 + u_1 + u_2 + u_3 + u_4 + u_5 + u_6 = 7 \times \frac{u_0 + u_6}{2} = 7 \times \frac{15\ 000 + 25\ 800}{2} = 142\ 800.$

La somme totale remboursée si le commerçant souscrivait le prêt auprès de la banque A serait de 142 800 €.

- **2.** La banque B propose également de rembourser le prêt sur 7 ans en 7 versements. Le premier remboursement noté v_0 serait de 20 000 ϵ . Les remboursements suivants, notés v_1 , v_2 , v_3 , v_4 , v_5 , v_6 seraient chacun en augmentation de 2% par rapport au remboursement précédent.
 - a) $v_1 = v_0 \times (1 + 2\%) = v_0 \times 1,02 = 20\ 000 \times 1,02 = 20\ 400$; $v_2 = v_1 \times 1,02 = 20\ 808$.
 - **b)** Pour tout entier n, $0 \le n \le 5$: $v_{n+1} = 1.02 \times v_n$.
 - c) Pour tout entier n, $0 \le n \le 5$: $\frac{v_{n+1}}{v_n} = 1,02 = constante$; on déduit que $(v_n)_{0 \le n \le 5}$ est une suite géométrique de premier terme $v_0 = 20\,000$ et de raison q = 1,02.
 - **d)** $v_0 + v_1 + v_2 + v_3 + v_4 + v_5 + v_6 = v_0 \times \frac{1 q^{6+1}}{1 q} = 20\ 000 \times \frac{1 1,02^7}{1 1,02} \approx 148\ 686.$

La somme remboursée si le commerçant souscrivait le prêt auprès de la banque B serait d'environ 148 686 €.

3. La banque A offre la solution la plus avantageuse.

Exercice 3: Payer en quatre fois (4 points)

Une entreprise achète un robot 6800 \in . Les conditions de paiement sont les suivantes : les quatre remboursements, notés u_0 , u_1 , u_2 , u_3 sont des termes successifs de la **suite géométrique** (u_n) de premier terme u_0 et de raison q=0,6.

Calculer les quatre remboursements : u_0 , u_1 , u_2 , u_3 .

$$u_0 + u_1 + u_2 + u_3 = u_0 \times \frac{1 - q^{3+1}}{1 - q}$$
; c'est-à—dire: $6\,800 = u_0 \times \frac{1 - 0.6^4}{1 - 0.6} \Leftrightarrow u_0 = \frac{6800 \times 0.4}{1 - 0.6^4} = 3125$

Donc : $u_1 = u_0 \times 0.6 = 3125 \times 0.6 = 1875$;

puis : $u_2 = u_1 \times 0.6 = 1875 \times 0.6 = 1125$;

enfin : $u_3 = u_2 \times 0.6 = 1125 \times 0.6 = 675$.

Vérification : 3125 + 1875 + 1125 + 675 = 6800.

Les quatre remboursements s'élèvent dans l'ordre à 3125 €, 1875 €, 1125 € et 675 €.